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Abstract

The aim of this paper is the validation of a computation by a numerical method, normally adapted to the
medium-frequency (MF) domain, of the strong coupling between an elastic structure (plate) and a cavity
entirely filled with an internal acoustic viscous dense fluid (water). The method of computation does not lie
in a modal approach (no need to extract the modal basis of the system) but it directly computes the
frequency response of the system using a specific algorithm called the ‘‘Onera-MF method’’.
This method was developed to accurately calculate the response of complex systems in an MF broad

band at a lower cost than standard modal method or direct step-by-step frequency method. The method
can also be used for the low-frequency (LF) domain where modal densities of systems are low. The
computation of the vibroacoustic response of the system lies in a finite element modelling of the overall
system (structure and fluid) in which the coupling between the structure and the fluid (light or heavy) is
directly taken into account within the formulation of the finite elements.
A simple and well-known experimental case was chosen for validation: a parallelepipedic cavity entirely

filled with water contained in a box defined by five rigid faces and closed at its end by an elastic clamped
homogeneous plate.
The validation is based on a comparison between measurement, the numerical computation and an

analytical approach in the frequency band ½0; 5000 Hz�: Both the vibratory response of the plate and the
acoustic pressure were compared. This study shows that the MF-method of computation used herein for
this case also works in a modal domain.
r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The aim of this work is to present a case of validation for the coupling of an elastic plate with an
acoustic cavity filled with water in the frequency band ½0; 5000 Hz�:
In the first step, the vibroacoustic response of the system was measured. The cavity was firstly

open and the effect of the clamping on the dynamics of the plate was analyzed. Then the cavity
was filled with water and the hydroelastic coupling between the plate and a dense fluid was
studied.
In the second step, a numerical computation has been carried out.
Even though this kind of work has already been performed by several previous authors, the

originality of the present work lies in the following facts:

* Firstly, we are able to measure accurately the vibratory response and the internal acoustic
pressure in water of a quite small system in a large frequency band.

* Secondly, for the numerical computation, we never used a modal reduction approach nor a
direct step-by-step frequency method. We used a specific method called the ‘‘Onera-MF
method’’ which normally suits a frequency domain where the analyzed systems have a medium-
frequency (MF) (non-modal) behaviour.

In the present case, the results of the test campaign on the vibroacoustic response of the system
exhibit a modal (not a mid-frequency) behaviour in the analyzed frequency band due to the fact
that the size of the structure is small and that the modal density is fairly poor. But the MF-method
used herein also works for this case of modal behaviour at a smaller cost compared to the cost of a
standard modal approach or of a direct step-by-step frequency method. This method of ‘‘two time
scales’’, based on the use of a time integration and a Fourier-transform-type technique, directly
calculates the vibroacoustic response of the system in the frequency domain without having to
extract the modal basis of the overall system before calculating the response.
An analytical method, based on a modal approach, was also developed in order to validate both

the measurements and the numerical computation.

2. Description of the analyzed vibroacoustic system

A steel elastic homogeneous plate which is 170 mm long, 150 mm broad and 4 mm thick,
is clamped by its four edges on a massive box shaped from a 320 mm steel cylinder (see Figs. 1
and 2). The plate was fixed and blocked up at the top of the rigid box with a 30 mm thick plate
and by a row of 20 bolts as shown in Fig. 3. The bottom of the box was also blocked up with a
30 mm thick plate in order to obtain a parallelepipedic cavity of 310 mm height, which has five
infinitely rigid faces up to a frequency of about 5000 Hz and one elastic face which is constituted
by the plate. The size of the box (which is small) was chosen to minimize the mass of the structure
(about 150 kg) and make the handling of the box easier for the test. A second reason of the
smallness of the system is that this structure was initially sized for another purpose than a
vibroacoustic analysis.
The plate is excited by one mechanical force on a point as shown in Fig. 2.
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3. Experiments

3.1. Instrumentation

Bruel&Kjaer 4374 low-mass accelerometers are used for the measurement of vibrations of the
plate. Plate length and width are divided into 10 parts and this leads to 121 locations as shown in
Fig. 4 in order to obtain precisely its modal forms.
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Fig. 1. View of the test structure and the cavity.

Fig. 2. Implementation of plate clamping and force exciter.
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A Bruel&Kjaer 4810 electrodynamic exciter and a force cell, developed at ONERA, are used for
exciting the plate. The force sensor which is suitable for light structures has a parasitic mass of less
than 0:5 g:
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Fig. 3. Simplified description of the plate clamping into the rigid box.

Fig. 4. Plate meshing of accelerometers used to identify modal forms.
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An ENTRAN EPL-B02 pressure sensor is located at the end of a tube and is inserted inside the
cavity by holes made at its back, when the cavity is filled with water. The pressure was measured
under the excitation point and on a vertical line under (20mm, 20mm) structural point as shown
in Fig. 5.

3.2. Measurements

The measurement hardware is composed of a front-end device SCADAS II from DIFA and of
an HP B160L workstation which makes a Leuven Measurement System (LMS) run.
The exciter is supplied with a stationary random signal for vibrating the structure. Six

accelerometers are moved to all locations on the plate and the frequency response functions
(FRF) of the structure are measured using an H1 estimator.
A blocksize of 16 384 was used which leads to a frequency resolution of 1:221 Hz up to the

frequency of 10 kHz:
In the first step, the box is open and a modal analysis using LMS software is performed to

obtain the in vacuo eigenmodes and eigenfrequencies of the clamped plate. The application
specific monitor used was the ‘‘time-domain multi-degrees of freedom’’. The measured transfer
response function at the excitation point and an analytical calculation based on results given in
Ref. [1] are compared in Fig. 6. The best fit of the two curves is obtained by using for the plate a
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Fig. 5. Description of the analyzed vibroacoustic system and selection of measurement points.
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Young’s modulus of 1:715� 1011 Pa: The 18% gap with respect to the real value of 2:1� 1011 Pa
is due to the imperfect clamping of the plate because, as a matter of fact, the steel plate is fixed on
a frame made up of the same material.
The phase value included between 0� and 180� shows the efficiency of the force cell. In fact, the

positive power input into a system implies that the real part of the transfer function (FRF)
between force and velocity at excitation point is positive. This means that the imaginary part of
the FRF between force and acceleration is positive and consequently the phase must be included
between 0� and 180� as shown in Fig. 6.
The LMS software also provides the calculation of the modal assurance criterion ðMACÞ which

tests the linear dependence between two modes. MAC is defined as

MACij ¼
f/T

i /jg
2

f/T
i /ig 
 f/

T
j /jg

; ð1Þ

where /i and /j are modal forms of real eigenmodes i and j.
The MAC is used for the comparison of a set of modes between each other or for the

correlation of two different sets [2,3]. It can also compare measured modes to predicted modes or
measured modes of a structure in different states.
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Fig. 6. Comparison of theoretical and experimental FRF at excitation point for the plate in vacuo.
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Table 1 shows the calculation of the MAC of the first five measured and computed modes with
regard to the measured modes. We can note that the shape of measured modes is very close to the
one of theoretical modes of a perfect clamped plate. These results also show the quasi-perfect
orthogonality of the measured modes.
After the modal identification of the system in vacuo and the updating of plate clamping on the

rigid cylinder, the box was filled with water and closed. The transfer response functions between
accelerometers and force for the plate and between pressure sensors and force for the cavity were
measured and an identification of first resonant frequencies for plate coupled to water was
performed afterwards.
Table 2 shows the correlation between measured frequencies when the plate is coupled to water

and measured frequencies for plate in vacuo and the MAC calculation. We can note that
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Table 1

MAC calculation of the first five modes in vacuo

Frequencies (Hz) Measured modes

1293. 2424. 2804. 3866. 4224.

Measured modes

1293. 100.

2424. 0.3 100.

2804. 0.0 0.3 100.

3866. 0.0 0.6 0.1 100.

4224. 0.2 0.1 0.1 0.6 100.

Computed modes

1290. 99.5 0.2 0.0 0.0 0.7

2428. 0.0 98.2 0.2 0.1 0.0

2825. 0.0 0.0 97.7 0.1 0.1

3878. 0.0 0.2 0.0 95.7 0.7

4237. 0.1 0.2 0.0 0.0 95.3

Table 2

Correlation between measured frequencies for plate coupled to water and measured frequencies for plate in vacuo and

MAC calculation

Frequencies (plate

coupled to water) (Hz)

In vacuo

Type (1,1),

1293: Hz
Type (2,1),

2424: Hz
Type (1,2),

2804: Hz
Type (2,2),

3866: Hz
Type (3,1),

4224: Hz

1129. 99.8 0.5 0.0 0.0 0.1

1654. 0.0 97.2 0.2 0.0 0.1

1952. 0.0 0.0 99.2 0.2 0.1

2687. 63.3 0.5 0.1 2.2 33.7

2908. 0.0 0.5 0.0 99.1 0.8

3386. 0.5 0.1 0.1 0.4 96.5
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eigenfrequencies of modes for plate in vacuo are shifted by a factor included between 0.6 and 0.8
when the plate is coupled to water due to the effect of added mass of water acting on the plate.
This result expresses a strong coupling between the plate and the cavity when it is filled with water.
In the list of frequencies due to coupled modes (given in Table 2), the fourth one at 2687 Hz comes
from the coupling of the first acoustic mode of cavity with rigid walls (which is located at
2420 Hz) and the first and fifth modes of the plate in vacuo (located at 1293 and 4224 Hz).
Experimental results will be now compared to analytical and numerical simulations.

4. Numerical and analytical simulations

4.1. Numerical computation

A computation by the finite element method was performed on the system in order to predict
the internal noise and vibration levels in band ½0; 5000 Hz�:
A finite element modelling of the overall structure was developed. The model is adapted to the

analyzed frequency band in terms of the size of elements.

* This model was developed using the I-deas meshing software.
* The computation was performed using the ‘‘In-house’’ finite element software named Adina–
Onera in which we have implemented a specific method called the ‘‘Onera-MF method’’ [4–6].

Before introducing the MF-method used for the numerical approach, we are going to describe
the general formulation of the vibroacoustic problem to be solved.

4.1.1. Expression of the coupling between an acoustic bounded fluid and an elastic structure

The coupling between an internal acoustic fluid and an elastic structure is expressed in terms of
the couple ðu;FÞ; where u is the unknown displacement field of the structure and F the velocity
potential within the fluid.
The weak final formulation of the two coupled domains is given in time domain under the form

of operators by the following expression:
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: ð2Þ

The above operatorsM; Q; C; H; R; K and G are defined in Appendix A and ðu;FÞ formulation
used herein is given in full detail in the book [7, Chapter 8].
We can see that the coupling between the two systems is a coupling by damping and is due to

operator H: From a practical point of view, the coupling between elements for the structure and
elements for the fluid will be carried out by introducing an element of interface.
Expression (2) of the vibroacoustic problem has three main advantages:

1. it is symmetric and nodes of fluid elements have only one degree of freedom (d.o.f.) which is a
potential scalar,
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2. it takes into account the viscous dissipation of the fluid and
3. it is very well-adapted for the Onera-MF method because this equation of coupling can be put

under the general form

M.uðtÞ þ C’uðtÞ þ K ¼ fðtÞ: ð3Þ

In terms of operators discretized by finite element method in the frequency domain, the linear real
matrices system to be solved is then

½�o2Mþ joCðoÞ þ KðoÞ�#uðoÞ ¼ #fðoÞ: ð4Þ

This general matrix system can be solved directly in frequency domain by a mixed method of
‘‘two time scales’’ called the ‘‘Onera-MF method’’.

4.1.2. Characteristics of medium-frequency domain

MF-domain is the frequency domain where modal densities of systems are not constant. They
can be either high or poor when frequency is varying within the analyzed band. In this domain,
characteristics of materials can vary with frequency and in that case it is not possible to find a
unique conservative system associated to the analyzed system within a large range of frequencies.
Moreover, finite element meshings used for the resolution in this frequency band must be built
using a large number of nodes and consequently a large number of d.o.f.’s; which leads to
handling large-matrices systems.
That is why standard methods of modal reduction usually used in low-frequency (LF) domain

are not accurate when frequency increases. The use of such methods requires to extract a very high
number of eigenmodes of the vibroacoustic system, at prohibitive cost and without assuming
convergence of iterative algorithms.
A direct frequency-by-frequency method is also not envisaged at a reasonable numerical cost

because we have to inverse at each discrete frequency a very-large-matrices complex system (4)
having a very high number of physical d.o.f.’s.

4.1.3. Onera-MF method

The Onera-MF method is a numerical method of ‘‘two time scales’’ and it is based on the use of
a time integration scheme coupled to a Fourier-transform-type technique.
A summary of the method is presented in Appendix B. For more details about this method, the

reader is invited to see Ref. [4].
This method has been implemented in the Adina–Onera software where we were forced to

complexify all matrices of finite element discretization and vectors of solution. The method has
already been applied to many previous vibroacoustic problems in the MF-band. The main
applications on more complex systems are given in Refs. [8–13].

4.1.4. Finite element model developed for the coupled system

The finite element model of the overall structural acoustic system used for the numerical
computation is presented below.

* The meshing of the elastic plate uses 27� 24� 2 classical three-node-plate elements contained
in the Adina–Onera software.
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* The acoustic fluid is meshed by 27� 24� 2� 25 six-node-3D-viscous fluid elements which are
also implemented in Adina–Onera.

* The six faces of the box (elastic and infinitely rigid) are meshed using 5142 three- or four-node-
2D-interface elements. This element enables to build operator H:

The overall model has about 20 000 d.o.f ’.s: 18 000 for the fluid (1 d.o.f. of potential per node)
and 1 794 for the structure (3 d.o.f’.s of flexure per node).

4.1.5. Damping parameters introduced

* The mean structural damping factor denoted Zs and introduced for the structure was taken at a
constant value of 0.8% over the whole frequency band ½0; 5000 Hz�: This value represents the
averaged value of structural damping measured for each mode during the LF identification of
the first modes of the plate in vacuo.

* The mean acoustic dissipation factor denoted Za and introduced for the internal fluid is
estimated from the data of its dynamical viscosity Z0 and it depends on the frequency as
follows:

ZaðoÞ ¼
4

3

Z0
r0c

2
0

o: ð5Þ

The above equation is obtained from the imaginary part within the formulation of the internal
dissipation of the acoustic fluid as it is defined in the book [14, Chapter X, Section 3]. Values taken
for r0; c0 and Z0 in Eq. (5) are: 1000 kg=m3; 1500 m=s and 0:001 kg=m 
 sÞ; respectively, when the
internal fluid is water.

4.1.6. Numerical computation

The frequency band for the computation is the band [460, 5000 Hz] with a step of resolution of
1 Hz: The MF-method needs this frequency band be divided into 29 sub-bands.
The numerical calculation was carried out using the Adina–Onera software.
The selected points chosen for the comparisons are those defined in Fig. 5: two points over the

plate and three points within the fluid.
The quantities observed are the FRFs jgðoÞ=F j for the structural points and jPðoÞ=F j for the

fluid points.

4.2. Analytical simulation

The analytical approach used in the simulations is entirely developed in Appendix C and it is
based on results of the book [15].

5. Results and comparisons

The results obtained by the two simulations are now compared to measurements.

ARTICLE IN PRESS

J.-M. David, M. Menelle / Journal of Sound and Vibration 265 (2003) 841–861850



We can see in Figs. 7 and 8 the comparison for quantity jgðoÞ=F j:
In Figs. 9–11, we can see the comparison for quantity jPðoÞ=F j:

6. Discussion

The analytical approach and the finite element computation are in perfect agreement on the
whole frequency band. Compared to measurements, the two predictive curves fit well to
measurement up to the frequency 3500 Hz: But from this frequency, we can see the notable
influence of the plate clamping which becomes more and more imperfect when frequency is still
increasing. The imperfection of the clamping is due to the fact that the steel plate is fixed in the
box by a frame made up with the same material, which makes the clamping be more flexible.
Another possible explanation could come from the following: (1) when pressure measurements are
being done, the tube containing pressure sensors inserted into the cavity can move, (2) when we
insert the tube into the cavity, a static over-pressure is created, which also creates a curvature to
the plate and consequently modifies the dynamics of the plate.
The FRFs obtained on this hydro-elasto-acoustic system show a modal behaviour of the plate

and consequently of the vibroacoustic system in the analyzed frequency band because modal
densities are quite small due to the smallness of the structure. However, the numerical method
used herein (which is normally adapted for an MF behaviour of systems) works. This method has
the advantage of being globally cheaper than the standard modal reduction method or the direct
frequency-by-frequency method and further the strong coupling between the structural element
and the dense fluid is directly taken into account within the finite element formulation.
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Fig. 7. Comparison of vibratory levels at excitation point (P108-4).
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7. Conclusion

Independent of the problem of the imperfect plate clamping into the box, measurements done
on this vibroacoustic system are very well-controlled.
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Fig. 9. Comparison of acoustic pressure levels inside fluid for point under excitation point.

Fig. 8. Comparison of vibratory levels at point P105-9.
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Considering the size of the box (small box), it is indeed difficult to build a perfect clamping for a
small plate into a non-infinitely rigid box of the same material. That is why, an updating of the
dynamics of the plate without water was carried out in a first step.
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Fig. 11. Comparison of acoustic pressure levels inside fluid for point under structural point (20mm, 20mm) but in the

bottom of box.

Fig. 10. Comparison of acoustic pressure levels inside fluid for point under structural point (20mm, 20mm).
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For the hydroelastic system, numerical computation and measurement fit well up to 3500 Hz
without using any new approximation or updating the system. Numerical method and analytical
method fit well on the whole analyzed frequency band.
The numerical method by finite elements used in this vibroacoustic problem is a method which

directly treats the coupling between a structure and a fluid (light or heavy) and which is also well-
adapted for such an LF and MF band. It does not need to extract the modal basis of the coupled
fluid–structure system before calculating the responses. For more complex vibroacoustic systems
having a true MF-behaviour, this method is more accurate than modal reduction methods. It is
particularly well-adapted when frequency increases and/or modal densities of systems become
large.
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Appendix A. Formulation of the coupling between an acoustic bounded fluid and an elastic structure

We consider two coupled domains and we define: O is the bounded volume occupied by the
internal fluid and S is its boundary, Oe is the elastic domain occupied by the structure of boundary
Se and SF is a part of Oe where a set of loadings f F

j is applied.

* The internal fluid is irrotational, viscous, compressible and its dynamics is defined by the
internal pressure P: The fluid is given by its acoustical characteristics: mass density r0; celerity
of sound c0 and dynamical viscosity Z0:
The pressure P is usually defined from a velocity potential F as

P ¼ �r0
@F
@t

: ðA:1Þ

(F is now the unknown variable to be found for acoustic fluid and it is scalar.)
Introducing the linear operators Q; R and H; satisfying

/QF;fS ¼
r0
c20

Z
O
F 
 f dx; ðA:2Þ

/RF;fS ¼ r0

Z
O
gradF 
 gradf dx; ðA:3Þ

Hf;
@u

@t

� �
¼ r0

Z
S
f

@u

@t

 n0

� �
dsS; ðA:4Þ

the variational formulation in potential for the dynamics of the fluid becomes

Q
@2F
@t2

;f
� �

þ
4

3

Z0
r0c

2
0

R
@F
@t

;f
� �

þ/RF;fS� Hf;
@u

@t

� �
¼ 0; ðA:5Þ
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where f is a test admissible function and @u=@t the normal velocity of the structure over the
interface S in direction n0; where n0 is the outgoing normal from S:

* Using for the structure the classical linear operators of massM; of damping C and of rigidity K;
the variational formulation for the dynamics of the elastic structure coupled to the internal
fluid is

M
@2u

@t2
; v

� �
þ C

@u

@t
; v

� �
þ/Ku; vSþ H

@F
@t

; v

� �
¼ /G; vS; ðA:6Þ

where v is a displacement test admissible function and /G; vS is defined by

/G; vS ¼
Z
SF

f F
j vj dSSF

: ðA:7Þ

In Eqs. (A.5) and (A.6), u ¼ ðu1; u2; u3Þ is the unknown displacement field of the structure to be
found.
For the two coupled domains (fluid and structure), the weak formulation (coming from the

combination of Eqs. (A.5) and (A.6) of the linear vibroacoustic problem to be solved is

M 0

0 �Q

" # @2u
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: ðA:8Þ

Appendix B. Medium-frequency method developed at ONERA: ‘‘Onera-MF method’’

This method is adapted to solve the following generic linear real matrices dynamical system
coming from a finite element discretization, in a large band of frequency:

½�o2Mþ joCðoÞ þ KðoÞ�#uðoÞ ¼ #fðoÞ: ðB:1Þ

M; CðoÞ; KðoÞ; #uðoÞ and #fðoÞ are, respectively, the mass, damping and rigidity matrices, nodal
displacements and forces vectors.
The ‘‘Onera-MF method’’ consists in dividing the MF broad band, denoted B; into several

narrower frequency sub-bands, denoted Bn: Then B ¼
S

n Bn:
Each sub-band Bn has a compact support and is defined by its central frequency on and by its

bandwidth Do; through Bn ¼ ½on � Do=2;on þ Do=2� granting the condition Do=on51:
For each Bn; three quantities are defined:

(1) B0 ¼ ½�Do=2;Do=2� is the LF-sub-band associated to the MF-sub-band Bn;
(2) tL ¼ 2p=Do is the long time scale and
(3) tS ¼ 2p=on is the short time scale.

For oABn; system (B.1) can be reduced to

½�o2Mþ joCðoÞ þ KðoÞ�#unðoÞ ¼ #fnðoÞ: ðB:2Þ
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Because Bn is a narrow band, system (B.2) can be approximated by

½�o2Mþ joCðonÞ þ KðonÞ�#vnðoÞ ¼ #fnðoÞ: ðB:3Þ

This new linear real matrices system is then solved in three steps:
(1) The short time scale tS which is associated to on is analytically treated in the frequency

domain using a frequency shift technique. This shift consists in assuming:

* o ¼ o0 þ on: If oABn then o0AB0:
* f0ðtÞ ¼ fnðtÞe�jont:
* v0ðtÞ ¼ vnðtÞe�jont:

Fourier transform of the two equations above yields

#v0ðo0Þ ¼ #vnðo0 þ onÞ ¼ #vnðoÞ; ðB:4Þ

#f0ðo0Þ ¼ #fnðo0 þ onÞ ¼ #fnðoÞ: ðB:5Þ

Because Bn has a compact support, the support of solution #v0ðo0Þ and external excitation #f0ðo0Þ is
sub-band B0: From a practical point of view, we can define

#f0ðo0Þ ¼
1 for o0AB0;

0 for o0eB0:

(
ðB:6Þ

So, its inverse Fourier transform f0ðtÞ is the scalar cardinal sinus function, such as

f0ðtÞ ¼
1

pt
sin

tDo
2

� �
ðB:7Þ

which is defined over � �N;þN½:
This function tends rapidly to zero when t tends to 7N and the energy is concentrated around

value t ¼ 0:
We can see at this step of development that the MF-solution #vnðoÞ in sub-band Bn can be

deduced from its associated LF-solution #v0ðo0Þ obtained in sub-band B0:
Replacing o by o0 þ on and using Eqs. (B.4) and (B.5), the LF-equation associated to problem

(B.3) to be solved in the frequency domain over sub-band B0 is then

½�o02Mn þ jo0Cn þ Kn�#v0ðo0Þ ¼ #f0ðo0Þ; ðB:8Þ

where

Mn ¼ M;

Cn ¼ 2jonMþ CðonÞ;

Kn ¼ �o2
nMþ jonCðonÞ þ KðonÞ: ðB:9Þ

Real matrices of system (B.3) have become now complex matrices.
For reasons of prohibitive numerical cost explained in Section 4.1.2, the above linear complex

matrices system (B.8) is not solved by a direct frequency-by-frequency method in frequency
domain but it is solved in time domain.
(2) Applying to this system the inverse Fourier transform with respect to o0; the LF equation

in time domain which is associated to the long time scale tL to be solved over sub-band B0 is
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defined by

Mn.v0ðtÞ þ Cn’v0ðtÞ þ Knv0ðtÞ ¼ f0ðtÞ: ðB:10Þ

This linear complex matrices system is then solved in the time domain by a step-by-step centred
Newmark method of parameters a ¼ 0:25 and b ¼ 0:5 which is unconditionally stable and where
initial conditions are assumed to be zero. We define the following coefficients a0; a1; a0; a1 and a2
due to the MF-algorithm by

a0 ¼ 4=Dt2 þ 4jon=Dt; a1 ¼ 2=Dt;

a0 ¼ 4=Dt2 þ 4jon=Dt � o2
n; a1 ¼ 2=Dt þ jon; a2 ¼ 4=Dt þ 2jon: ðB:11Þ

If Dt ¼ tmþ1 � tm is the time-integration step of the scheme and t0 ¼ 0; the initial time, then the
numerical Newmark scheme is defined by the following set of equations:

v0ðt0Þ ¼ f0g; ’v0ðt0Þ ¼ f0g; .v0ðt0Þ ¼ f0g; ðB:12Þ

.v0ðtmþ1Þ ¼
4

Dt2
v0ðtmþ1Þ �

4

Dt2
v0ðtmÞ �

4

Dt
’v0ðtmÞ � .v0ðtmÞ; ðB:13Þ

’v0ðtmþ1Þ ¼
2

Dt
v0ðtmþ1Þ �

2

Dt
v0ðtmÞ � ’v0ðtmÞ: ðB:14Þ

At step m þ 1; the solution of Eq. (B.10) v0ðtmþ1Þ ¼ v0ðmDtÞ is obtained from the resolution of
the next equation, with respect to the solution at step m:

½KnðonÞ þ a1CnðonÞ þ a0Mn�v0ðtmþ1Þ ¼ f0ðtmþ1Þ þMn½a0v0ðtmÞ þ a2’v0ðtmÞ þ .v0ðtmÞ�

þ CnðonÞ½a1v0ðtmÞ þ ’v0ðtmÞ�: ðB:15Þ

From the above solution of v0ðtmþ1Þ; we can then deduce solutions of .v0ðtmþ1Þ and ’v0ðtmþ1Þ with
respect to solutions at step m using Eqs. (B.13) and (B.14).
To ensure the stability of Newmark scheme and the convergence of solutions of Eqs. (B.13)–

(B.15), Dt must be chosen by

Dt ¼ tL=MT ; where MT is an integer which must be greater than 3:

(3) The MF-solution #vnðoÞ of system (B.3) for any discrete frequency of sub-band Bn is now
built at a very small numerical cost from the LF-solutions of Eq. (B.15) only given at sampling
time steps v0ðmtLÞ; by a Shannon transform.
The result of Shannon transform is

#vnðoÞ ¼ tL

X
m

v0ðmtLÞe�jmtLðo�onÞ: ðB:16Þ

The above solution can easily be approximated by

#vnðoÞCtL

XMS

m¼�MI

v0ðmtLÞe�jmtLðo�onÞ: ðB:17Þ

MI and MS are, respectively, the starting and ending points of cardinal sinus function f0ðtÞ defined
by (B.7) in Newmark scheme and in practice they are relatively small and this explains the
numerical efficiency of the Onera–MF algorithm.
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The real efficiency of the method comes from that Eq. (B.10) contains all the dynamics of the
analyzed system over sub-band Bn and its resolution in time domain is performed only one time
for each sub-band Bn at a much cheaper numerical cost than a direct frequency-by-frequency
method which would need to inverse system (B.3) for a great number of frequencies belonging to
Bn if we wanted to get the same frequency resolution as the one given by Eq. (B.17). The efficiency
also comes from that Shannon Transform (B.16) gives a continuous spectrum of the frequency
solution over sub-band Bn:

Appendix C. Analytical calculation of the vibroacoustic response of a parallelepipedic acoustic

cavity filled with water and coupled to a four-edged clamped elastic plate

The mathematical developments presented in this appendix are based on considerations coming
from the book [15, pp. 256–261] which deals with the vibroacoustics of a cylinder containing a
fluid.

C.1. Dynamics of plate

According to Ref. [15], the displacement of the four-edged clamped elastic plate coupled to the
internal fluid can be put in the form

wðx; y;oÞ ¼
XþN

m¼2

XþN

n¼2

/mnðx; yÞ
R

S
Pðx; y;oÞ/mnðx; yÞ dS

ms½o2
mn � o2 þ jZsoomn�

R
S

/2
mnðx; yÞ dS

; ðC:1Þ

where ms ¼ rh is the mass of plate per unit area; S is the area of the plate; *E ¼ Eð1þ jZsÞ is the
complex Young modulus of plate; Zs is the mean damping loss factor of plate and

Pðx; y;oÞ ¼ Fdðx0; y0Þ � pðx; y; 0;oÞ: ðC:2Þ

The eigenmodes /mn and the eigenfrequencies omn are issued from Ref. [1] for a four-edged
clamped plate in which the eigenmodes are orthogonal. In Ref. [1], /mnðx; yÞ ¼ /mðxÞ � /nðyÞ: F is
the one-point force applied at ðx0; y0Þ and pðx; y; 0;oÞ is the solution of acoustic problem over
surface of plate.

C.2. Acoustic problem for internal cavity

Acoustic problem inside cavity is:

Dp þ *k2p ¼ 0 in volume S;
@p

@z
¼ r0o

2w over elastic plate;

@p

@n
¼ 0 over rigid faces: ðC:3Þ
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*k is the complex acoustic wavenumber and by introducing the mean acoustic dissipation factor
Za inside cavity,

*k can be put in the form:

*k2 ¼
o2

c20ð1þ jZaÞ
C
o2

c20
ð1� jZaÞ with Za ¼

4

3

oZ0
r0c

2
0

;

where Z0 ¼ 0:001 is the dynamical viscosity of water.
We will find a solution of the internal pressure pðx; y; z;oÞ; satisfying boundary conditions on

rigid faces, under the form

pðx; y; z;oÞ ¼
XþN

p¼0

XþN

q¼0

PpqðoÞ cosðkpxÞ cosðkqyÞfekzðLz�zÞ þ e�kzðLz�zÞg ðC:4Þ

with

kp ¼
pp
Lx

; kq ¼
qp
Ly

; k2
z ¼ k2

p þ k2
q �

o2

c20
þ j

Zao
2

c20
¼ ðaþ jbÞ2:

The real and imaginary parts of wavenumber kz are given by

a ¼

k2
pq þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

pq þ Z2a
o4

c40

s

2

0
BBBB@

1
CCCCA

1=2

; b ¼

�k2
pq þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

pq þ Z2a
o4

c40

s

2

0
BBBB@

1
CCCCA

1=2

;

where

k2
pq ¼ k2

p þ k2
q �

o2

c20
:

Form (C.4) of pðx; y; z;oÞ must also satisfying the boundary condition (C.3) over the elastic
plate.
A combination of Eq. (C.1) providing displacement of plate and Eqs. (C.4) and (C.2) giving

pressure restricted at surface of plate leads to the solution of the following linear system which is:

�
1

r0o2

X
pq

PpqðoÞ cosðkpxÞ cosðkqyÞ dfpq

¼ F �
X
mn

/mnðx; yÞ/mnðx0; y0Þ

BmnðoÞ
R

S
/2

mnðx; yÞ dS

�
X

pq

PpqðoÞ � fpq �
X
mn

Zmnpq

/mnðx; yÞ

BmnðoÞ
R

S
/2

mnðx; yÞ dS
; ðC:5Þ
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where

BmnðoÞ ¼ ms½o2
mn � o2 þ jZsoomn�;

Zmnpq ¼
Z

S

/mnðx; yÞ cosðkpxÞ cosðkqyÞ dS

¼
Z Lx

0

/mðxÞ cosðkpxÞ dx 

Z Ly

0

/nðyÞ cosðkqyÞ dy;

fpq ¼ cosðbLzÞ coshðaLzÞ þ j sinðbLzÞ sinhðaLzÞ;

dfpq ¼ a cosðbLzÞ sinhðaLzÞ � b sinðbLzÞ coshðaLzÞ

þ j½b cosðbLzÞ sinhðaLzÞ þ a sinðbLzÞ coshðaLzÞ�:

If the two members of Eq. (C.5) are multiplied by /rsðx; yÞ; by integrating Eq. (C.5) over surface
S of plate, orthogonality of modes /mn leads for any couple ðr; sÞ to a set of coupled equations
where variables PpqðoÞ are the unknown quantities to be found:X

pq

PpqðoÞ Zrspq fpq �
BrsðoÞ
r0o2

dfpq

� �
¼ F � /rsðx0; y0Þ: ðC:6Þ

Finally, Eq. (C.4) gives the solution for pðx; y; z;oÞ inside internal fluid and Eq. (C.1) and (C.2)
for wðx; y;oÞ of the plate.
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